Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
1.
Epilepsy Behav ; 153: 109716, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508103

RESUMO

OBJECTIVE: This study investigates the prevalence of pathogenic variants in the mechanistic target of rapamycin (mTOR) pathway in surgical specimens of malformations of cortical development (MCDs) and cases with negative histology. The study also aims to evaluate the predictive value of genotype-histotype findings on the surgical outcome. METHODS: The study included patients with drug-resistant focal epilepsy who underwent epilepsy surgery. Cases were selected based on histopathological diagnosis, focusing on MCDs and negative findings. We included brain tissues both as formalin-fixed, paraffin-embedded (FFPE) or fresh frozen (FF) samples. Single-molecule molecular inversion probes (smMIPs) analysis was conducted, targeting the MTOR gene in FFPE samples and 10 genes within the mTOR pathway in FF samples. Correlations between genotype-histotype and surgical outcome were examined. RESULTS: We included 78 patients for whom we obtained 28 FFPE samples and 50 FF tissues. Seventeen pathogenic variants (22 %) were identified and validated, with 13 being somatic within the MTOR gene and 4 germlines (2 DEPDC5, 1 TSC1, 1 TSC2). Pathogenic variants in mTOR pathway genes were exclusively found in FCDII and TSC cases, with a significant association between FCD type IIb and MTOR genotype (P = 0.003). Patients carrying mutations had a slightly better surgical outcome than the overall cohort, however it results not significant. The FCDII diagnosed cases more frequently had normal neuropsychological test, a higher incidence of auras, fewer multiple seizure types, lower occurrence of seizures with awareness impairment, less ictal automatisms, fewer Stereo-EEG investigations, and a longer period long-life of seizure freedom before surgery. SIGNIFICANCE: This study confirms that somatic MTOR variants represent the primary genetic alteration detected in brain specimens from FCDII/TSC cases, while germline DEPDC5, TSC1/TSC2 variants are relatively rare. Systematic screening for these mutations in surgically treated patients' brain specimens can aid histopathological diagnoses and serve as a biomarker for positive surgical outcomes. Certain clinical features associated with pathogenic variants in mTOR pathway genes may suggest a genetic etiology in FCDII patients.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia , Malformações do Desenvolvimento Cortical do Grupo I , Malformações do Desenvolvimento Cortical , Adulto , Humanos , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/cirurgia , Serina-Treonina Quinases TOR , Epilepsias Parciais/genética , Epilepsias Parciais/diagnóstico , Convulsões , Células Germinativas/patologia , Malformações do Desenvolvimento Cortical/patologia
2.
Ital J Pediatr ; 50(1): 50, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481309

RESUMO

BACKGROUND: To analyze the etiological distribution characteristics of drug-resistant epilepsy (DRE) in children, with the aim of providing valuable perspectives to enhance clinical practice. METHODS: In this retrospective study, clinical data were collected on 167 children with DRE who were hospitalized between January 2020 and December 2022, including gender, age of onset, seizure types, video electroencephalogram(VEEG) recordings, neuroimaging, and genetic testing results. Based on the etiology of epilepsy, the enrolled children were categorized into different groups. The rank-sum test was conducted to compare the age of onset for different etiologies. RESULTS: Of the 167 cases, 89 (53.3%) had a clear etiology. Among them, structural factors account for 23.4%, genetic factors for 19.2%, multiple factors for 7.2%, and immunological factors for 3.6%. The age of onset was significantly earlier in children with genetic causes than those with structural (P < 0.001) or immunological (P = 0.001) causes. CONCLUSIONS: More than half of children with DRE have a distinct underlying cause, predominantly attributed to structural factors, followed by genetic factors. Genetic etiology primarily manifests at an early age, especially among children aged less than one year. This underscores the need for proactive enhancements in genetic testing to unveil the underlying causes and subsequently guide treatment protocols.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Criança , Humanos , Estudos Retrospectivos , Epilepsia Resistente a Medicamentos/etiologia , Epilepsia Resistente a Medicamentos/genética , Epilepsia/diagnóstico , Epilepsia/etiologia , Epilepsia/tratamento farmacológico , Convulsões , Eletroencefalografia/métodos
3.
Nat Commun ; 15(1): 2180, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467626

RESUMO

Epilepsy is a chronic and heterogenous disease characterized by recurrent unprovoked seizures, that are commonly resistant to antiseizure medications. This study applies a transcriptome network-based approach across epilepsies aiming to improve understanding of molecular disease pathobiology, recognize affected biological mechanisms and apply causal reasoning to identify therapeutic hypotheses. This study included the most common drug-resistant epilepsies (DREs), such as temporal lobe epilepsy with hippocampal sclerosis (TLE-HS), and mTOR pathway-related malformations of cortical development (mTORopathies). This systematic comparison characterized the global molecular signature of epilepsies, elucidating the key underlying mechanisms of disease pathology including neurotransmission and synaptic plasticity, brain extracellular matrix and energy metabolism. In addition, specific dysregulations in neuroinflammation and oligodendrocyte function were observed in TLE-HS and mTORopathies, respectively. The aforementioned mechanisms are proposed as molecular hallmarks of DRE with the identified upstream regulators offering opportunities for drug-target discovery and development.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Humanos , Redes Reguladoras de Genes , Hipocampo/metabolismo , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/genética , Convulsões/metabolismo , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia Resistente a Medicamentos/genética
4.
BMC Pediatr ; 24(1): 96, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310242

RESUMO

BACKGROUND: NARS2 as a member of aminoacyl-tRNA synthetases was necessary to covalently join a specific tRNA to its cognate amino acid. Biallelic variants in NARS2 were reported with disorders such as Leigh syndrome, deafness, epilepsy, and severe myopathy. CASE PRESENTATION: Detailed clinical phenotypes were collected and the NARS2 variants were discovered by whole exome sequencing and verified by Sanger sequencing. Additionally, 3D protein structure visualization was performed by UCSF Chimera. The proband in our study had early-onset status epilepticus with abnormal EEG and MRI results. She also performed global developmental delay (GDD) and myocardial dysfunction. Next-generation sequencing (NGS) and Sanger sequencing revealed compound heterozygous missense variants [NM_024678.6:exon14: c.1352G > A(p.Arg451His); c.707T > C(p.Phe236Ser)] of the NARS2 gene. The proband develops refractory epilepsy with GDD and hyperlactatemia. Unfortunately, she finally died for status seizures two months later. CONCLUSION: We discovered two novel missense variants of NARS2 in a patient with early-onset status epilepticus and myocardial dysfunction. The NGS enables the patient to be clearly diagnosed as combined oxidative phosphorylation deficiency 24 (COXPD24, OMIM:616,239), and our findings expands the spectrum of gene variants in COXPD24.


Assuntos
Aspartato-tRNA Ligase , Epilepsia Resistente a Medicamentos , Epilepsia , Estado Epiléptico , Feminino , Humanos , Estado Epiléptico/diagnóstico , Estado Epiléptico/genética , Epilepsia Resistente a Medicamentos/genética , Mutação de Sentido Incorreto , RNA de Transferência , Mutação , Aspartato-tRNA Ligase/genética
5.
Epilepsia Open ; 9(2): 800-807, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38366963

RESUMO

Genetic variants in relevant genes coexisting with MRI lesions in children with drug-resistant epilepsy (DRE) can negatively influence epilepsy surgery outcomes. Still, presurgical evaluation does not include genetic diagnostics routinely. Here, we report our presurgical evaluation algorithm that includes routine genetic testing. We analyzed retrospectively the data of 68 children with DRE operated at a mean age of 7.8 years (IQR: 8.1 years) at our center. In 49 children, genetic test results were available. We identified 21 gene variants (ACMG III: n = 7, ACMG IV: n = 2, ACMG V: n = 12) in 19 patients (45.2%) in the genes TSC1, TSC2, MECP2, DEPDC5, HUWE1, GRIN1, ASH1I, TRIO, KIF5C, CDON, ANKD11, TGFBR2, ATN1, COL4A1, JAK2, KCNQ2, ATP1A2, and GLI3 by whole-exome sequencing as well as deletions and duplications by array CGH in six patients. While the results did not change the surgery indication, they supported counseling with respect to postoperative chance of seizure freedom and weaning of antiseizure medication (ASM). The presence of genetic findings leads to the postoperative retention of at least one ASM. In our cohort, the International League against Epilepsy (ILAE) seizure outcome did not differ between patients with and without abnormal genetic findings. However, in the 7/68 patients with an unsatisfactory ILAE seizure outcome IV or V 12 months postsurgery, 2 had an abnormal or suspicious genetic finding as a putative explanation for persisting seizures postsurgery, and 3 had received palliative surgery including one TSC patient. This study highlights the importance of genetic testing in children with DRE to address putative underlying germline variants as genetic epilepsy causes or predisposing factors that guide patient and/or parent counseling on a case-by-case with respect to their individual chance of postoperative seizure freedom and ASM weaning. PLAIN LANGUAGE SUMMARY: Genetic variants in children with drug-resistant epilepsy (DRE) can negatively influence epilepsy surgery outcomes. However, presurgical evaluation does not include genetic diagnostics routinely. This retrospective study analyzed the genetic testing results of the 68 pediatric patients who received epilepsy surgery in our center. We identified 21 gene variants by whole-exome sequencing as well as deletions and duplications by array CGH in 6 patients. These results highlight the importance of genetic testing in children with DRE to guide patient and/or parent counseling on a case-by-case with respect to their individual chance of postoperative seizure freedom and ASM weaning.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Criança , Estudos Retrospectivos , Resultado do Tratamento , Epilepsia/diagnóstico , Epilepsia/genética , Epilepsia/cirurgia , Convulsões/tratamento farmacológico , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/cirurgia , Testes Genéticos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/uso terapêutico , Ubiquitina-Proteína Ligases/uso terapêutico , Cinesinas
6.
Epilepsia Open ; 9(1): 424-431, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37943122

RESUMO

Focal cortical dysplasia (FCD) represents the most common cause of drug-resistant epilepsy in adult and pediatric surgical series. However, genetic factors contributing to severe phenotypes of FCD remain unknown. We present a patient with an exceptionally rapid development of drug-resistant epilepsy evolving in super-refractory status epilepticus. We performed multiple clinical (serial EEG, MRI), biochemical (metabolic and immunological screening), genetic (WES from blood- and brain-derived DNA), and histopathological investigations. The patient presented 1 month after an uncomplicated varicella infection. MRI was negative, as well as other biochemical and immunological examinations. Whole-exome sequencing of blood-derived DNA detected a heterozygous paternally inherited variant NM_006267.4(RANBP2):c.5233A>G p.(Ile1745Val) (Chr2[GRCh37]:g.109382228A>G), a gene associated with a susceptibility to infection-induced acute necrotizing encephalopathy. No combination of anti-seizure medication led to a sustained seizure freedom and the patient warranted induction of propofol anesthesia with high-dose intravenous midazolam and continuous respiratory support that however failed to abort seizure activity. Brain biopsy revealed FCD type IIa; this finding led to the indication of an emergency right-sided hemispherotomy that rendered the patient temporarily seizure-free. Postsurgically, he remains on antiseizure medication and experiences rare nondisabling seizures. This report highlights a uniquely severe clinical course of FCD putatively modified by the RANBP2 variant. PLAIN LANGUAGE SUMMARY: We report a case summary of a patient who came to our attention for epilepsy that could not be controlled with medication. His clinical course progressed rapidly to life-threatening status epilepticus with other unusual neurological findings. Therefore, we decided to surgically remove a piece of brain tissue in order to clarify the diagnosis that showed features of a structural brain abnormality associated with severe epilepsy, the focal cortical dysplasia. Later, a genetic variant in a gene associated with another condition, was found, and we hypothesize that this genetic variant could have contributed to this severe clinical course of our patient.


Assuntos
Encefalopatias , Epilepsia Resistente a Medicamentos , Epilepsia , Displasia Cortical Focal , Chaperonas Moleculares , Complexo de Proteínas Formadoras de Poros Nucleares , Estado Epiléptico , Criança , Pré-Escolar , Humanos , Masculino , Progressão da Doença , DNA , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia/complicações , Midazolam , Estado Epiléptico/genética , Estado Epiléptico/cirurgia
8.
Eur J Paediatr Neurol ; 47: 80-87, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37812946

RESUMO

OBJECTIVE: Although genetic causes of drug-resistant focal epilepsy and selected focal malformations of cortical development (MCD) have been described, a limited number of studies comprehensively analysed genetic diagnoses in patients undergoing pre-surgical evaluation, their outcomes and the effect of genetic diagnosis on surgical strategy. METHODS: We analysed a prospective cohort of children enrolled in epilepsy surgery program over January 2018-July 2022. The majority of patients underwent germline and/or somatic genetic testing. We searched for predictors of surgical outcome and positive result of germline genetic testing. RESULTS: Ninety-five patients were enrolled in epilepsy surgery program and 64 underwent resective epilepsy surgery. We ascertained germline genetic diagnosis in 13/74 patients having underwent germline gene testing (pathogenic or likely pathogenic variants in CHRNA4, NPRL3, DEPDC5, FGF12, GRIA2, SZT2, STXBP1) and identified three copy number variants. Thirty-five patients underwent somatic gene testing; we detected 10 pathogenic or likely pathogenic variants in genes SLC35A2, PTEN, MTOR, DEPDC5, NPRL3. Germline genetic diagnosis was significantly associated with the diagnosis of focal epilepsy with unknown seizure onset. SIGNIFICANCE: Germline and somatic gene testing can ascertain a definite genetic diagnosis in a significant subgroup of patients in epilepsy surgery programs. Diagnosis of focal genetic epilepsy may tip the scales against the decision to proceed with invasive EEG study or surgical resection; however, selected patients with genetic focal epilepsies associated with MCD may benefit from resective epilepsy surgery and therefore, a genetic diagnosis does not disqualify patients from presurgical evaluation and epilepsy surgery.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia , Malformações do Desenvolvimento Cortical , Criança , Humanos , Estudos Prospectivos , Epilepsia/genética , Epilepsia/cirurgia , Epilepsia/complicações , Epilepsias Parciais/complicações , Testes Genéticos , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/cirurgia , Malformações do Desenvolvimento Cortical/genética , Proteínas Ativadoras de GTPase/genética , Fatores de Crescimento de Fibroblastos/genética , Proteínas do Tecido Nervoso/genética
9.
BMC Neurol ; 23(1): 338, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37749503

RESUMO

BACKGROUND: Focal cortical dysplasia (FCD) is a malformation of cortical development that causes medical refractory seizures, and one of the main treatments may be surgical resection of the affected area of the brain. People affected by FCD may present with seizures of variable severity since childhood. Despite many medical treatments available, only surgery can offer cure. The pathophysiology of the disease is not yet understood; however, it is known that several gene alterations may play a role. The WNT/ß-catenin pathway is closely related to the control and balance of cell proliferation and differentiation in the central nervous system. The aim of this study was to explore genes related to the WNT/ß-catenin pathway in lesional and perilesional brain tissue in patients with FCD type II. METHODS: Dysplastic and perilesional tissue from the primary dysplastic lesion of patients with FCD type IIa were obtained from two patients who underwent surgical treatment. The analysis of the relative expression of genes was performed by a qRT-PCR array (super array) containing 84 genes related to the WNT pathway. RESULTS: Our results suggest the existence of molecular alteration in some genes of the WNT pathway in tissue with dysplastic lesions and of perilesional tissue. We call this tissue of normal-appearing adjacent cortex (NAAC). Of all genes analyzed, a large number of genes show similar behavior between injured, perilesional and control tissues. However, some genes have similar characteristics between the perilesional and lesional tissue and are different from the control brain tissue, presenting the perilesional tissue as a molecularly altered material. CONCLUSION: Our results suggest that the perilesional area after surgical resection of tissue with cortical dysplasia presents molecular changes that may play a role in the recurrence of seizures in these patients. The perilesional tissue should receive expanded attention beyond the somatic mutations described and associated with FCD, such as mTOR, for example, to new signaling pathways that may play a crucial role in seizure recurrence.


Assuntos
Epilepsia Resistente a Medicamentos , Displasia Cortical Focal , Humanos , Criança , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/cirurgia , Via de Sinalização Wnt/genética , beta Catenina , Convulsões
10.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(10): 1204-1210, 2023 Oct 10.
Artigo em Chinês | MEDLINE | ID: mdl-37730218

RESUMO

OBJECTIVE: To analyze the characteristics of genetic variants among children with refractory epilepsy (RE). METHODS: One hundred and seventeen children with RE who had presented at the Affiliated Jinhua Hospital of Zhejiang University School of Medicine from January 1, 2018 to November 21, 2019 were selected as the study subjects. The children were divided into four groups according to their ages of onset: < 1 year old, 1 ~ 3 years old, 3 ~ 12 years old, and >= 12 years old. Clinical data and results of trio-whole exome sequencing were retrospectively analyzed. RESULTS: In total 67 males and 50 females were included. The age of onset had ranged from 4 days to 14 years old. Among the 117 patients, 33 (28.21%) had carried pathogenic or likely pathogenic variants. The detection rates for the < 1 year old, 1 ~ 3 years old and >= 3 years old groups were 53.85% (21/39), 12.00% (3/25) and 16.98% (9/53), respectively, with a significant difference among the groups (χ2 = 19.202, P < 0.001). The detection rates for patients with and without comorbidities were 33.33% (12/36) and 25.93% (21/81), respectively (χ2 = 0.359, P = 0.549). Among the 33 patients carrying genetic variants, 27 were single nucleotide polymorphisms (SNPs) or insertion/deletions (InDels), and 6 were copy number variations (CNVs). The most common mutant genes were PRRT2 (15.15%, 5/33) and SCN1A (12.12%, 4/33). Among children carrying genetic variants, 72.73% (8/11) had attained clinical remission after adjusting the medication according to the references. CONCLUSION: 28.21% of RE patients have harbored pathogenic or likely pathogenic variants or CNVs. The detection rate is higher in those with younger age of onset. PRRT2 and SCN1A genes are more commonly involved. Adjusting medication based on the types of affected genes may facilitate improvement of the remission rate.


Assuntos
Variações do Número de Cópias de DNA , Epilepsia Resistente a Medicamentos , Lactente , Feminino , Masculino , Humanos , Criança , Recém-Nascido , Pré-Escolar , Epilepsia Resistente a Medicamentos/genética , Estudos Retrospectivos , Polimorfismo de Nucleotídeo Único
11.
Epilepsia ; 64(12): 3113-3129, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37703096

RESUMO

Drug discovery in epilepsy began with the finding of potassium bromide by Sir Charles Locock in 1857. The following century witnessed the introduction of phenotypic screening tests for discovering antiseizure medications (ASMs). Despite the high success rate of developing ASMs, they have so far failed in eliminating drug resistance and in delivering disease-modifying treatments. This emphasizes the need for new drug discovery strategies in epilepsy. RNA-based drugs have recently shown promise as a new modality with the potential of providing disease modification and counteracting drug resistance in epilepsy. RNA therapeutics can be directed either toward noncoding RNAs, such as microRNAs, long noncoding RNAs (ncRNAs), and circular RNAs, or toward messenger RNAs. The former show promise in sporadic, nongenetic epilepsies, as interference with ncRNAs allows for modulation of entire disease pathways, whereas the latter seem more promising in monogenic childhood epilepsies. Here, we describe therapeutic strategies for modulating disease-associated RNA molecules and highlight the potential of RNA therapeutics for the treatment of different patient populations such as sporadic, drug-resistant epilepsy, and childhood monogenic epilepsies.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , MicroRNAs , Humanos , Criança , Epilepsia/tratamento farmacológico , Epilepsia/genética , MicroRNAs/genética , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia Resistente a Medicamentos/genética , Descoberta de Drogas , Resistência a Medicamentos
12.
Epilepsy Res ; 196: 107221, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37696194

RESUMO

INTRODUCTION: Researchers, clinicians and patients are turning to new innovations in research and clinical practice to further their knowledge in the genetic domain and improve diagnostics or treatment. However, with increased knowledge in genetics, societal issues may arise. Being conscious of these issues is crucial in order to implement standardized and efficient testing on a wider scale that is accessible to a greater number of individuals while simultaneously returning test results, including incidental findings, in a timely manner. METHODS: Within the framework of a genomics research project, we invited 20 participants who suffer from refractory epilepsy to provide insight on their personal experiences with epilepsy, as well as their thoughts on receiving Whole Genome Sequencing (WGS) results and with whom they would feel comfortable sharing these results with. RESULTS: All participants had their own unique experience with epilepsy, such as how they handled their diagnosis, their struggles following the diagnosis, the healthcare services they received, how they shared their diagnosis with others, and how they managed stigmatization from others. Most participants would be eager to know their WGS results, whether the results be related to epilepsy (n = 19), response to pharmaceutical drugs including AEDs (n = 16), comorbidities (n = 19) and incidental findings (n = 15). CONCLUSION: Our findings reinforce the need to improve access to genetic testing for epilepsy patients in clinical settings. Furthermore, while acquiring more genetic knowledge (i.e. WGS) about epilepsy can provide answers for the affected population, it also requires the simultaneous involvement of several medical disciplines, with greater emphasis on genetic and psychological counseling.


Assuntos
Epilepsia Resistente a Medicamentos , Humanos , Adulto , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/genética , Motivação , Ansiedade , Emoções , Sequenciamento Completo do Genoma
13.
Epilepsia Open ; 8(4): 1588-1595, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37574648

RESUMO

Epilepsy surgery in genetic drug-resistant epilepsy is a debated subject as more histological and molecular data are available. We retrospectively collected data from focal drug-resistant epilepsy patients that underwent stereoelectroencephalography (SEEG) invasive recordings. Patients with nonlesional brain imaging or in whom a first epilepsy surgery failed to control seizures were selected. We computed and displayed the intracranial ictal onset activity pattern on structural imaging. Patients underwent epilepsy gene panel testing, next generation sequencing-NGS. Of 113 patients, 13 underwent genetic testing, and in 6 patients, a mechanistic target of rapamycin pathway gene germline mutation (mTOR) was identified. Brain imaging was nonlesional except for one patient in whom two abnormalities suggestive of focal cortical dysplasia (FCD) were found. Patients underwent tailored brain surgery based on SEEG data, tissue analysis revealed FCD and postsurgical outcome was favorable. Our findings are similar to previous case series suggesting that epilepsy surgery can be a treatment option in patients with mTOR pathway mutation. In patients with mTOR pathway mutation, the postsurgical outcome is favorable if complete resection of the epileptogenic zone is performed. Electrophysiological seizure onset patterns in FCDs associated with mTOR pathway mutations display low-voltage fast activity as previously described.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Displasia Cortical Focal , Humanos , Estudos Retrospectivos , Eletroencefalografia/métodos , Epilepsia/genética , Epilepsia/complicações , Convulsões/genética , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/cirurgia , Mutação em Linhagem Germinativa , Serina-Treonina Quinases TOR/genética
14.
Epileptic Disord ; 25(3): 383-389, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37536979

RESUMO

INTRODUCTION: Pathogenic variants of the GABRG2 gene, encoding a GABAA receptor subunit, have been associated with various epileptic syndromes and drug-resistant epilepsy. Vinpocetine has been previously reported efficacious in a patient harboring a GABRB3 pathogenic variant, encoding another GABAA receptor subunit. CASE PRESENTATION: We describe a patient with GABRG2-related drug-resistant epilepsy who improved after vinpocetine treatment. An 8-year-old boy with a family history of epilepsy was diagnosed with early onset absence epilepsy at 6 months of age and was treated unsuccessfully with sodium valproate and ethosuximide. At 6 years of age, he developed generalized tonic-clonic seizures and increasing absences despite lamotrigine add-on as well as learning difficulties. Brain MRI was normal and video-EEG telemetry showed multiple myoclonic absences. An epilepsy gene panel analysis showed a GABRG2 pathogenic variant, c.254 T > A p.(Ile85Lys) (NM_198903.2), inherited from the proband's father. Seizures were resistant to several medications. After treatment with vinpocetine add-on, the patient showed a dramatic initial response, further reduction of seizures, and improvement of his cognitive functions. CONCLUSION: This case illustrates that vinpocetine could be considered in drug-resistant epilepsies related to GABRG2 in accordance with the principles of precision medicine.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia Tipo Ausência , Epilepsia Generalizada , Masculino , Humanos , Criança , Epilepsia Tipo Ausência/tratamento farmacológico , Epilepsia Tipo Ausência/genética , Epilepsia Tipo Ausência/diagnóstico , Medicina de Precisão , Receptores de GABA-A/genética , Anticonvulsivantes/uso terapêutico , Convulsões/tratamento farmacológico , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia Resistente a Medicamentos/genética , Epilepsia Generalizada/diagnóstico
15.
Eur J Neurol ; 30(10): 3341-3346, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37422919

RESUMO

BACKGROUND: Pathogenic variants in the GAP activity towards RAGs 1 (GATOR1) complex genes (DEPDC5, NPRL2, NPRL3) cause focal epilepsy through hyperactivation of the mechanistic target of rapamycin pathway. We report our experience using everolimus in patients with refractory GATOR1-related epilepsy. METHODS: We performed an open-label observational study of everolimus for drug-resistant epilepsy caused by variants in DEPDC5, NPRL2 and NPRL3. Everolimus was titrated to a target serum concentration (5-15 ng/mL). The primary outcome measure was change in mean monthly seizure frequency compared with baseline. RESULTS: Five patients were treated with everolimus. All had highly active (median baseline seizure frequency, 18/month) and refractory focal epilepsy (failed 5-16 prior anti-seizure medications). Four had DEPDC5 variants (three loss-of-function, one missense) and one had a NPRL3 splice-site variant. All patients with DEPDC5 loss-of-function variants had significantly reduced seizures (74.3%-86.1%), although one stopped everolimus after 12 months due to psychiatric symptoms. Everolimus was less effective in the patient with a DEPDC5 missense variant (43.9% seizure frequency reduction). The patient with NPRL3-related epilepsy had seizure worsening. The most common adverse event was stomatitis. CONCLUSIONS: Our study provides the first human data on the potential benefit of everolimus precision therapy for epilepsy caused by DEPDC5 loss-of-function variants. Further studies are needed to support our findings.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia , Humanos , Everolimo/efeitos adversos , Epilepsias Parciais/tratamento farmacológico , Epilepsias Parciais/genética , Proteínas Ativadoras de GTPase/genética , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia Resistente a Medicamentos/genética
16.
Epilepsia Open ; 8(3): 969-979, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37259768

RESUMO

OBJECTIVES: To summarize the clinical features of epilepsy related to DEPDC5, NPRL2, and NPRL3 genes encoding the GATOR1 complex in children and to evaluate the factors affecting the prognosis of these epilepsies. METHODS: In this retrospective study, we reviewed the clinical and genetic characteristics of children with epilepsy related to GATOR1 variants who were admitted to the Peking University First Hospital between January 2016 and December 2021. Potential prognostic factors were assessed by comparing children with and without ongoing seizures. RESULTS: Fifty probands, including 31 boys and 19 girls were recruited. The median age at onset of epilepsy was 4 months, and 64% of patients had early-onset epilepsy (≤1 year). The most frequent epileptic seizure type was focal seizure (86%). Among the 50 patients, only six were with de novo variants. According to the novel classification framework for GATOR1 variants, 36 patients were with pathogenic variants and 14 with likely pathogenic variants. DEPDC5 variants were found in 37 patients, NPRL3 in 9, and NPRL2 in 4. The phenotype was similar among the probands, with variants in DEPDC5, NRPL2, or NPRL3. 76% (38/50) of epilepsy related to GATOR1 variants was neuroimaging positive, including brain MRI positive in 31 patients, and MRI combined F-18-fluorodeoxyglucose positron emission tomography positive in the other seven patients. Twenty-seven patients underwent epilepsy surgery. In total, after initial antiseizure medications alone, 92% (46/50) of patients were drug-resistant epilepsies, only 8% (4/50) of the probands became seizure-free but seizure-free (≥6 m) occurred in 92.6% (25/27) of patients with drug-resistant epilepsy after epilepsy surgery at the last follow-up. Patients undergoing epilepsy surgery had better epilepsy prognosis. SIGNIFICANCE: Epilepsy related to GATOR1 variants had high possibility to be drug-resistant epilepsy and to have positive neuroimaging finding. Epilepsy surgery is the only favorable factor for better seizure prognosis in this kind epilepsy.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Estudos Retrospectivos , Mutação , Proteínas Supressoras de Tumor/genética , Epilepsia/genética , Epilepsia/cirurgia , Convulsões/genética , Convulsões/cirurgia , Proteínas Ativadoras de GTPase/genética , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/cirurgia
17.
Mol Neurobiol ; 60(10): 5755-5769, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37341859

RESUMO

The purpose of this study was to identify and validate new putative lead drug targets in drug-resistant mesial temporal lobe epilepsy (mTLE) starting from differentially expressed genes (DEGs) previously identified in mTLE in humans by transcriptome analysis. We identified consensus DEGs among two independent mTLE transcriptome datasets and assigned them status as "lead target" if they (1) were involved in neuronal excitability, (2) were new in mTLE, and (3) were druggable. For this, we created a consensus DEG network in STRING and annotated it with information from the DISEASES database and the Target Central Resource Database (TCRD). Next, we attempted to validate lead targets using qPCR, immunohistochemistry, and Western blot on hippocampal and temporal lobe neocortical tissue from mTLE patients and non-epilepsy controls, respectively. Here we created a robust, unbiased list of 113 consensus DEGs starting from two lists of 3040 and 5523 mTLE significant DEGs, respectively, and identified five lead targets. Next, we showed that CACNB3, a voltage-gated Ca2+ channel subunit, was significantly regulated in mTLE at both mRNA and protein level. Considering the key role of Ca2+ currents in regulating neuronal excitability, this suggested a role for CACNB3 in seizure generation. This is the first time changes in CACNB3 expression have been associated with drug-resistant epilepsy in humans, and since efficient therapeutic strategies for the treatment of drug-resistant mTLE are lacking, our finding might represent a step toward designing such new treatment strategies.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/complicações , Lobo Temporal/metabolismo , Convulsões/metabolismo , Hipocampo/metabolismo , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/metabolismo
18.
Ann Neurol ; 94(4): 745-761, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37341588

RESUMO

OBJECTIVE: Temporal lobe epilepsy (TLE) is characterized by recurrent seizures generated in the limbic system, particularly in the hippocampus. In TLE, recurrent mossy fiber sprouting from dentate gyrus granule cells (DGCs) crea an aberrant epileptogenic network between DGCs which operates via ectopically expressed GluK2/GluK5-containing kainate receptors (KARs). TLE patients are often resistant to anti-seizure medications and suffer significant comorbidities; hence, there is an urgent need for novel therapies. Previously, we have shown that GluK2 knockout mice are protected from seizures. This study aims at providing evidence that downregulating KARs in the hippocampus using gene therapy reduces chronic epileptic discharges in TLE. METHODS: We combined molecular biology and electrophysiology in rodent models of TLE and in hippocampal slices surgically resected from patients with drug-resistant TLE. RESULTS: Here, we confirmed the translational potential of KAR suppression using a non-selective KAR antagonist that markedly attenuated interictal-like epileptiform discharges (IEDs) in TLE patient-derived hippocampal slices. An adeno-associated virus (AAV) serotype-9 vector expressing anti-grik2 miRNA was engineered to specifically downregulate GluK2 expression. Direct delivery of AAV9-anti grik2 miRNA into the hippocampus of TLE mice led to a marked reduction in seizure activity. Transduction of TLE patient hippocampal slices reduced levels of GluK2 protein and, most importantly, significantly reduced IEDs. INTERPRETATION: Our gene silencing strategy to knock down aberrant GluK2 expression demonstrates inhibition of chronic seizure in a mouse TLE model and IEDs in cultured slices derived from TLE patients. These results provide proof-of-concept for a gene therapy approach targeting GluK2 KARs for drug-resistant TLE patients. ANN NEUROL 2023;94:745-761.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , MicroRNAs , Humanos , Camundongos , Animais , Epilepsia do Lobo Temporal/terapia , Lobo Temporal , Hipocampo , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/terapia , Convulsões
19.
Epilepsia ; 64(9): 2260-2273, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37264783

RESUMO

OBJECTIVE: Neurosurgery is a safe and effective form of treatment for select children with drug-resistant epilepsy. Still, there is concern that it remains underutilized, and that seizure freedom rates have not improved over time. We investigated referral and surgical practices, patient characteristics, and postoperative outcomes over the past two decades. METHODS: We performed a retrospective cohort study of children referred for epilepsy surgery at a tertiary center between 2000 and 2018. We extracted information from medical records and analyzed temporal trends using regression analyses. RESULTS: A total of 1443 children were evaluated for surgery. Of these, 859 (402 females) underwent surgical resection or disconnection at a median age of 8.5 years (interquartile range [IQR] = 4.6-13.4). Excluding palliative procedures, 67% of patients were seizure-free and 15% were on no antiseizure medication (ASM) at 1-year follow-up. There was an annual increase in the number of referrals (7%, 95% confidence interval [CI] = 5.3-8.6; p < .001) and surgeries (4% [95% CI = 2.9-5.6], p < .001) over time. Duration of epilepsy and total number of different ASMs trialed from epilepsy onset to surgery were, however, unchanged, and continued to exceed guidelines. Seizure freedom rates were also unchanged overall but showed improvement (odds ratio [OR] 1.09, 95% CI = 1.01-1.18; p = .027) after adjustment for an observed increase in complex cases. Children who underwent surgery more recently were more likely to be off ASMs postoperatively (OR 1.04, 95% CI = 1.01-1.08; p = .013). There was a 17% annual increase (95% CI = 8.4-28.4, p < .001) in children identified to have a genetic cause of epilepsy, which was associated with poor outcome. SIGNIFICANCE: Children with drug-resistant epilepsy continue to be put forward for surgery late, despite national and international guidelines urging prompt referral. Seizure freedom rates have improved over the past decades, but only after adjustment for a concurrent increase in complex cases. Finally, genetic testing in epilepsy surgery patients has expanded considerably over time and shows promise in identifying patients in whom surgery is less likely to be successful.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Criança , Feminino , Humanos , Estudos Retrospectivos , Resultado do Tratamento , Epilepsia/diagnóstico , Epilepsia/genética , Epilepsia/cirurgia , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/cirurgia , Testes Genéticos
20.
Neurol Res ; 45(8): 765-772, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37142567

RESUMO

OBJECTIVES: The study aimed to assess the relationship between the functional single nucleotide polymorphism (SNP) (rs57095329) of miR-146a, the progression of drug-resistant epilepsy (DRE), and the severity of the disease (seizure frequency) in a group of Egyptian children epilepsy patients. SUBJECTS AND METHODS: 110 Egyptian children were recruited and divided into two groups, the epilepsy patients (n = 60) and the healthy control children (n = 50). The patient's group was equally subdivided into two subgroups: drug-resistant and drug-responsive epilepsy patients. Genomic DNA samples from all participants were screened for the incidence of the rs57095329 SNP of the miR-146a gene by the Real-Time PCR. RESULTS: There was no statistical significance between epilepsy patients compared to controls regarding the rs57095329 SNP genotypes and alleles. Contrarily, there was significant difference between the drug-resistant epilepsy and the drug-responsive cases (P < 0.05). The genotypes AG (P < 0.007, OR: 0.118, 95% CI (0.022-0.636)) and GG (P = 0.016, OR: 0.123, 95% CI (0.023-0.769)) were higher among the drug-resistant, while AA was higher among the drug-responsive patients. The alleles A and G were higher among all cases, with a statistically significant difference (P = 0.028, OR: 0.441, 95% CI (0.211-0.919)). A significant difference was reported in the dominant model (AA versus AG+GG) (P = 0.005, OR: 0.12395% CI (0.025-0.621)). CONCLUSION: Therefore, miR-146a might be a potential therapeutic target for epilepsy treatment. The study was limited by the low number of young epileptic patients, the refusal of some parents to participate, and the incomplete medical history of some cases in the study, which forced their exclusion. More studies might be necessary to investigate other effective drugs to overcome the resistance issues induced by miR-146a rs57095329 polymorphisms.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , MicroRNAs , Criança , Humanos , Estudos de Casos e Controles , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia Resistente a Medicamentos/genética , Epilepsia/tratamento farmacológico , Epilepsia/genética , Predisposição Genética para Doença/genética , Genótipo , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...